Hemopoieitc Spleen Colony Studies

نویسندگان

  • J. L. Curry
  • J, J. Trentin
  • N. Wolf
چکیده

The polycythemic repression of erythropoiesis and the restoration of erythropoiesis by specific stimulation were studied in the spleen colony system in irradiated mice. 1. A 5 day period of erythropoietin stimulation (exogenous erythropoietin) or repression (polycythemia) of the bone marrow donor only, does not significantly alter the number or type of colonies formed by the transplanted marrow cells. 2. Erythropoietin stimulation did not alter the number or type of endogenous colonies formed in mice receiving 580 R. Erythropoietin repression (polycythemia) markedly reduced the growth but not the number of erythroid colonies, while not affecting the other types of colonies formed endogenously. 3. Erythropoietin stimulation of the irradiated recipient during colony growth did not alter the number or type of spleen colonies formed by transplanted marrow. Erythropoietin repression by polycythemia during colony growth completely suppressed the appearance of morphologically erythroid colonies without significantly altering the incidence of the other colony types. This effect of polycythemia was completely prevented by exogenous erythropoietin. Irradiated mice are therefore presumed to be secreting sufficient erythropoietin for maximal erythroid colony development. 4. The erythroid colonies suppressed by polycythemia were recognizable as microscopic foci of undifferentiated cells. Exposure of these foci to erythropoietin stimulation at different periods in their development was manifested by different degrees of growth and differentiation, from which it is apparent that erythropoietin stimulates not only morphological differentiation but also rapid mitosis. Retransplantation of either erythroid or of neutrophilic primary spleen colonies gave rise to both erythroid and neutrophilic secondary spleen colonies. The percentage of erythroid secondary colonies was slightly but significantly higher among the progeny of transplanted erythroid primary colonies than among the progeny of transplanted neutrophilic primary colonies. On the basis of these and other results, a working hypothesis is proposed for factors controlling the growth and differentiation of spleen colonies from transplanted bone marrow. It is postulated that most but perhaps not all spleen colony-forming units are pluripotent hemopoietic stem cells. It is further postulated that hemopoietic-inductive microenvironments (HIM) of different kinds exist in both the spleen and the bone marrow, and that these determine the differentiation of pluripotent stem cells into each of the lines of hemopoietic differentiation. Erythropoietin therefore may "induce" erythroid differentiation of only those stem cells under the influence of an erythroid HIM. Alternatively erythropoietin may act only as a growth and function stimulant of those stem cells that have been "induced" by an erythroid HIM into a state of erythropoietin responsiveness. In the latter case morphological differentiation presumably results from the functional activity stimulated by ESF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of daunorubicin drug with and without cimetidine on the nucleated cells of bone marrow of balb/c mouse

Introduction: Hematopoiesis is an on going process mammalian marrow system. A few cells from the nucleated cells of bone marrow are hematopoietic cells which include primary stem cells, precursor cells and progenitor cells. Primary stem cells and progenitor cells are able to produce colonies in culture medium (CFU-C) and irradiated mouse spleen (CFU-S). A hematopoietic cell is alive and act...

متن کامل

Hemopoietic Spleen Colony Studies

The effects of phytohemagglutinin (PHA) were studied in irradiated mice to see if a definite myeloproliferative effect could be demonstrated in vivo. The data obtained suggested the following conclusions. PHA treatment of the bone marrow donor only, causes a consistent but slight reduction in transplantable spleen colony-forming unit (CFU) content of the bone marrow 24 hr after the last PHA inj...

متن کامل

Hemopoietic Colony Studies

In heavily irradiated mice, bone marrow regeneration of either endogenous or exogenous origin was shown to occur in discrete foci comparable to the more intensively studied spleen colonies. The number of endogenous bone marrow colonies was inversely related to dose of whole body X-irradiation. Endogenous marrow colonies were found after higher doses of irradiation than were endogenous spleen co...

متن کامل

Effect of glucan on granulopoiesis and macrophage genesis in mice.

Glucan, a potent reticuloendothelial stimulant, is a glucopyranose polysaccharide derived from zymosan. Because of glucan's potential as an immunotherapeutic agent, we performed studies in order to determine its effect on granulopoiesis and macrophage production in mice. One week after the i.p. injection of 4 mg of glucan, there was a tenfold increase in colony-forming cells in the spleen and a...

متن کامل

In vitro growth of granulocytic colonies from circulating cells in human cord blood.

Human umbilical cord blood cells from 26 were formed in these cultures per 2 x newborn infants and peripheral blood cells i0 nucleated cells plated. The peripheral from 18 adults were cultured in vitro by blood cell cultures from adults gave rise to using the agar-gel method of human 0-1 1 colonies, with a mean of 3, per 2 x hemopoietic cell culture. An increased i0 nucleated cells plated. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 125  شماره 

صفحات  -

تاریخ انتشار 1967